MP-Flow: A Deep Graph Reinforcement Learning Agent for
Maximizing Throughput in the Lightning Network

Harrison Rush Vincent Vikash Singh
Amboss Technologies Amboss Technologies Stillmark

Green Cove Springs, USA Green Cove Springs, USA San Francisco, USA
harrison@amboss.tech v@amboss.tech vikash@stillmark.com

Jesse Shrader Emanuele Rossi

Amboss Technologies Amboss Technologies
Green Cove Springs, USA Barcelona, Spain
j@amboss.tech emanuele.rossil909@gmail.com
Abstract

We address the challenge of reliable payment routing in the Bitcoin Lightning
Network (LN), an emerging technology designed to scale Bitcoin transactions
through off-chain channels. A key bottleneck to LN performance is liquidity
placement, ensuring sufficient channel capacity along payment paths to maxi-
mize throughput. We formulate throughput-oriented liquidity placement as a
graph reinforcement learning problem and introduce a lightweight agent that
combines a message-passing policy network with proximal policy optimization
(PPO) and action masking for stable and generalizable learning. To provide
a theory-grounded yet scalable training reward, we use max flow as a proxy
for payment throughput. In extensive experiments on real Lightning Network
snapshots, our method consistently outperforms strong heuristic baselines across
multiple seeds and unseen graphs. The agent has been deployed in production
for peer recommendations, facilitating over $5,000,000 in BTC in liquidity allo-
cation across 200 channels. Our results highlight the potential of graph-based
reinforcement learning for adaptive resource allocation in decentralized financial
systems.

1 Introduction

Payment-channel networks such as the Bitcoin Lightning Network (LN) enable fast, low-cost pay-
ments by moving transactions off-chain. Their performance, however, hinges on where liquidity is
placed: poor placement creates bottlenecks that throttle routing capacity, while targeted placement
can unlock throughput. For LN operators the question is simple to state and hard to solve: which peers
should I connect to, and how should I allocate scarce liquidity to participate effectively? Existing
practice leans on static graph heuristics (e.g., degree or betweenness) that ignore directed balances,
budgeted interventions, and interactions among multiple allocations [16, 5].

The LN offers little external observability and no supervised traces; realistic traffic simulation
demands strong assumptions about demand matrices, retry logic, and hidden balances that can
dominate conclusions (see, e.g., LN measurement/topology studies) [23, 21]. We therefore frame
throughput-oriented liquidity placement as a graph RL problem and adopt a theory-grounded proxy
for end-to-end capacity: maximum s—t flow on the observed capacity graph [4, 1]. Improving cut
bottlenecks improves feasible routing, while avoiding brittle and expensive traffic simulation.

We instantiate a simple, deployable policy that combines a message-passing neural network (MPNN)
with an on-policy optimizer (PPO) and feasibility-aware action masking. The MPNN uses a
permutation-invariant max aggregator to emphasize narrow-cut structure in heterogeneous-capacity
neighborhoods [6], and PPO provides stable, sample-efficient updates without second-order steps [22].

Preprint. Preliminary work.

Deep Graph RL: MP-Flow

We evaluate under a paired protocol on real LN snapshots and report both seen-graph performance
and generalization to unseen snapshots.

Contributions.

* QOutcome-aligned RL formulation: liquidity placement as a graph decision process with reward
defined by relative improvement in Max-Flow on observed capacity graphs [1].

* Simple, deployable policy: a compact MPNN-PPO agent with action masking and max
aggregation [6, 22].

* Empirical evidence on real LN topology: consistent improvements over strong heuristic
baselines under paired evaluation, with robustness checks and multi-seed, multi-snapshot results
(cf. LN topology variability [23]).

* Practical relevance: the approach has been deployed in practice to inform peer recommenda-
tions.

The remainder of the paper introduces the necessary background on Max-Flow, RL, and MPNNs
(§2); explains how we assemble these standard components for LN liquidity placement and why
Max-Flow is an appropriate proxy in this setting (§4); details datasets, metrics, and protocols (§5);
and presents results on seen and unseen graphs with robustness analyses (§6). We discuss limitations
of proxy-based evaluation and pathways toward richer traffic models in future work.

2 Background
2.1 Bitcoin & Lightning Network

Bitcoin is a decentralized digital currency introduced by Satoshi Nakamoto in 2008 [15], operating
without intermediaries like banks or governments. It uses blockchain technology—distributed ledger
consisting of blocks that contain transaction data. Each block is cryptographically linked to the
previous one, forming a chain that prevents tampering and double-spending. However, Bitcoin faces
scalability issues, processing approximately seven transactions per second with confirmation times
ranging from 10 minutes to an hour. High transaction fees during network congestion further limit
its usability for everyday transactions. The Lightning Network (LN) is a second-layer protocol for
Bitcoin that enables fast, low-cost transactions by using off-chain payment channels [20]. Channels
lock funds in a multi-signature address and allow participants to exchange updates privately; only
the opening and closing transactions are recorded on-chain. Linking many such channels creates
a peer-to-peer network that can route payments between any two nodes. Each channel has a fixed
capacity, so insufficient liquidity may block routes. Because the network’s topology and flows change
continuously, nodes must actively manage liquidity to maintain performance.

2.2 Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) are a class of neural network architectures specifically designed to
process data represented as graphs, effectively capturing the complex dependencies and relationships
inherent in such structures [10]. Graphs are mathematical structures consisting of nodes (vertices) V'
and edges E, denoted as G = (V, E), where edges represent connections or interactions between
nodes. In many real-world applications, data naturally resides in non-Euclidean domains with
irregular structures, such as social networks, biological networks, and communication networks like
the Lightning Network.

Let hg) denote the embedding of node v at layer ¢, and e, edge features on (u,v). A generic
Message Passing Neural Network (MPNN) layer is:

m) = Ouen¥ (b, b, ews), BT = 6O(R0, m{Y),

where () and ¢(*) are learnable functions and [J is a permutation-invariant aggregator (e.g.,
SUM/MEAN/MAX) [7].

2.3 Max-Flow

We consider a directed graph G = (V, E') with capacities ¢ : E — Rxg, source s € V, and sink
t € V. Aflow is a function f : E — R satisfying capacity constraints 0 < f(u,v) < c(u,v)

Deep Graph RL: MP-Flow

and flow conservation), f(u,v) =Y f(v,w) forall v € V' \ {s,t}. The value of the flow is
Ifl = >, f(s,w) =, f(u,t). The maximum flow problem seeks f* maximizing |f|. By the
Max-Flow Min-Cut theorem, the maximum flow equals the minimum s—t cut capacity. Classical
algorithms include augmenting paths (Ford—Fulkerson / Edmonds—Karp) and push-relabel variants.

2.4 Reinforcement Learning (MDP/PPQO)

An episodic Markov Decision Process (MDP) is (S, A, P, r,) with states s €S, actions a € A, tran-
sition kernel P, reward r, and discount . Policy-gradient methods optimize J(0) = E,[>_, v'r4].
Proximal Policy Optimization (PPO) maximizes a clipped surrogate objective using on-policy trajec-
tories with an advantage estimator; see [22] for details.

3 Related Work

In this section, we review the existing literature on optimizing the Lightning Network, maxflow
algorithms in payment networks, and the application of deep graph reinforcement learning.
LightningNetworkDaemon (LND) one of the most widely used implementations of the Light-
ning Network protocol developed by Lightning Labs, includes an Autopilot feature. This module
automatically opens channels on behalf of the user based on certain heuristics such as degree and
betweenness centrality [?]. This demonstrates an early approach to automating node and channel
management. However, it relies on predefined heuristics rather than learning-based methods. Other
Lightning Network implementations, such as Blockstream’s C-lightning and ACINQ’s Eclair, have
explored autopilot functionalities through plugins and external tools. These implementations often
allow for customization and integration with third-party autopilot solutions [3]. These tools allow
for automated channel selection, but still require significant domain knowledge and custom setup.
Beyond community plugins, Lightning Labs’ production tooling (Lightning Terminal “AutoOpen’)
explicitly uses betweenness centrality to score new peers, reflecting current industry practice for
channel selection heuristics [11, 12]. This motivates our choice of Betweenness as the primary
baseline for practical comparisons.

Pickhardt and Richter model path reliability by treating channel balances as random variables and
computing most-likely, low-cost multi-part payments via (generalized) min-cost flow; they also
argue for zero base fees to linearize the objective [18]. Complementary analyses formalize payment
success under uncertain balances and derive bounds/estimators for end-to-end success [19, 17].
Closer to our data model, Davis etal. propose channel balance interpolation (CBI), predicting
local/remote splits from node/channel features; such priors can reduce variance in simulation and
improve routing objectives [25, 2]. Our work differs by optimizing absolute max-flow uplift with a
learned MPNN-PPO policy, but shares the premise that directed balances and bottlenecks—rather
than raw centrality—govern deliverability.

Wang et al. [26] proposed Flash, a dynamic routing algorithm designed to improve transaction
success rates by optimizing liquidity utilization across the network. Their approach uses modified
maxflow for large payments combined with a routing table lookup for small payments. Sivaraman et
al. [24] proposed the Spider Network, a high-throughput routing solution employing a congestion
control algorithm inspired by maxflow optimization. Recent advancements in graph neural networks
(GNN5s) have introduced novel strategies for maximizing throughput in complex network deployments,
leveraging reinforcement learning to iteratively adjust node placements in alignment with throughput
optimization goals, as demonstrated by Yang et al. [27] in their GNN-based PPO framework.

Despite advancements, there remains a gap in integrating these approaches to address liquidity
allocation specifically. Previous studies have focused on routing algorithms, security vulnerabilities,
and general network optimization but have not leveraged deep reinforcement learning with graph
neural networks to optimize liquidity distribution in the Lightning Network.

4 Method

4.1 Lightning Network as a Graph

We model the public LN snapshot as a directed, weighted graph G = (V, E). Each undirected
channel {u, v} yields two directed edges (u,v) and (v, u) whose capacities represent local balances;

Deep Graph RL: MP-Flow

only the total capacity is observed, so per-direction balances are sampled once per run. Node features
(PageRank, capacity ratio, normalized degree, clustering) and optional edge features (base fee, fee
rate, channel capacity) are z-scored per reset; see App E.0.1 for definitions and transforms.

4.2 Feature Engineering

At each environment reset we construct a node—feature matrix X € RV *% and, when enabled, an
edge—feature matrix £ € R™*3, The node features are: (i) PageRank centrality C'pr(u) for global
influence; (ii) capacity ratio Ccr(u) = Cy/), oy Cy for anode’s share of network liquidity; (iii)
normalized degree Cp(u) = deg(u)/(IN — 1) for relative connectivity; and (iv) local clustering
coefficient C(u) for neighborhood density. When use_edge_features is active, each directed
edge (u, v) provides three attributes: base fee f2%¢, proportional fee rate f™°, and channel capacity

cuv- To mitigate heavy tails, edge attributes undergo a log(1l +) transform and per-column
standardization E <— (F — ug) © (0 + €); missing fee fields default to zero so E maintains shape

M x 3. All features are recomputed after any topological change and z-scored per dimension before
being consumed by the MPNN.

4.3 Markov Decision Process

We use a finite-horizon MDP with k=5 actions. The state encodes G; and features (X, E); actions
are masked node picks (open/top-up) under a per-action budget. Transitions deterministically update
capacities. The per-step reward is the marginal improvement in absolute max-flow,

ry = Fy — Fy_q,

where F} is computed via push-relabel on the a sample of random targets in the network and summed.
Further implementation details are in App E.

Policy and Learning Algorithm

We instantiate the policy as a message-passing GNN (see §2) with a permutation-invariant max
aggregator to better highlight narrow cut bottlenecks. Node and edge features feed the message and
update functions; a small readout produces action logits over the admissible set, with feasibility
enforced by masked sampling. For learning, we adopt a standard on-policy objective (PPO) to couple
stable updates with straightforward deployment. The specific message/update parameterization,
action masking, and PPO settings are reported in §5; extended diagrams appear in App. A.

4.4 Algorithm Selection

We evaluated A2C [14], PPO [22], DDPG [13], and a custom hybrid (“GCN2”) with discrete node
picks plus continuous allocations. Off-policy/continuous variants (DDPG/GCN2) were brittle and
failed to converge reliably under our reward and topology shifts; A2C learned but exhibited instability.
PPO’s clipped surrogate and entropy regularization delivered stable, sample-efficient learning with
the masked discrete action space, so we adopt PPO and vary only the function approximator (MPNN-
Max).

4.5 Application-specific modifications.

We modify the standard MPNN-PPO framework to operate directly on the Lightning Network (LN)
topology, where each edge encodes a bidirectional payment channel with known capacity and policy
attributes. The agent’s objective is to allocate liquidity over visible nodes to maximize network
throughput, measured as the marginal change in global max-flow.

Message-passing backbone. Each node 1 is initialized with a feature vector hEO) containing its
local degree, capacity share, and policy metadata. At each message-passing layer [, node ¢ aggregates
messages from its neighbors A/ (4):

m(l) = MLP(l)(hEZ) || h;l) H eij)7 eij = [Cijv ageij, feeij], (1)

i m

Deep Graph RL: MP-Flow

where e;; encodes channel capacity, policy, and topological cues. Instead of mean or sum aggregation,
we employ a max operator to emphasize the single most constraining neighbor—mimicking bottleneck
detection along min-cut edges:

(+1) _ (@ 0
hi = MLP, (hv | jren/\z}ﬁ) m) @)

This max aggregation (Eq. 2) replaces the usual mean-pooling used in standard MPNNs and allows
the policy to focus on locally binding capacity constraints rather than diffuse averages.

Actor—critic heads. After L message-passing layers, we obtain node embeddings hz(-L). Global
representations fp(G) are computed by pooling across visible nodes, and the shared backbone feeds
two separate output heads:

mo(at|st) = softmax(W fo(Gy)), Vo(se) = Wy fo(Gy), 3)
where my denotes the stochastic policy and Vj the state-value estimator.
Action masking and feasibility. Only channels that are both visible and operationally feasible

are permitted as actions. A binary mask M; € {0, 1}|V| encodes this constraint. The masked policy
distribution is normalized as:

mo(ails) © My
2o mo(aglse) My
where infeasible actions (self-edges, disconnected nodes, or already-visited peers) are assigned

zero probability. This ensures compliance with LN routing rules and keeps exploration within the
deployable control surface.

“

7ré(at|5t) =

Flow-based reward proxy. Our training and evaluation hinge on s—t Max-Flow (equivalently,
Min-Cut) as a reward surrogateWhile full packet-level simulators or stochastic traffic models could
yield closer approximations of routing success or latency, they require strong assumptions (arrival
processes, path selection rules, fee dynamics, MPP splitting behavior) and are computationally
expensive to re-run at each training iteration. In contrast, push—relabel (or equivalent) max-flow
solves in polynomial time even on large graphs, allowing us to recompute reward signals per step.

On the fixed budget of 5 actions. We acknowledge that real-world Lightning Network operators
may allocate liquidity using larger or even continuous budgets. In early development, we conducted
internal sweeps over multiple allocation budgets (K € {1, 3,5, 10,20}) to identify a configuration
that balanced reward signal, stability, and realism. Empirically, /=5 yielded the most reliable policy
gradients and clearest throughput signal:

5 Experimental Details

A full overview of the hardware and experimental setup can be found in App. E

5.1 Data Processing

The data used in this experiment consists of three network snapshots collected from lightning node
operated by Amboss Technologies on May 15th, July 15th and October 2nd 2025. These snapshots
includes a list of all open channels, their capacities cy,,,} as well as the capacities of the associated
nodes C,. Other node and channel features are present but not used in our case. Each channel is first
split into directed edges then aggregated for all the edges between the same pair of nodes, summing
the capacities. With the directed edges and specified capacities, we then sample the local balances
random uniformly. Once we have this list of directed edges and local balances (y(uyv), y(v,u)), we
are able to create a weighted directed graph using the iGraph python library [?]. For all learning
experiments we extract two representative sub-graphs: a 1000 node subgraph for rapid prototyping and

Deep Graph RL: MP-Flow

Table 1: MPNN actor—critic configuration.

Parameter Value
Num node features 4
Num edge features 3
Hidden dimension 64

Num message-passing layers 2

hyper-parameter sweeps, and a 5000 node sub-graph that captures ~ 90% of total network capacity
while discarding the sparse long-tail of tiny nodes. Both sub-graphs are selected by highest-degree
ranking to preserve core connectivity.

Baseline Policies. To put the learned policy into context, we compare against three non-learning
baselines that require progressively more graph information:

1. Random. A uniformly random valid node is chosen at every step.
2. Degree Centrality. Nodes are sampled proportionally to their (scaled) out-degree.

3. Betweenness Centrality. Nodes are sampled proportionally to their betweenness scores.

All baselines observe the same action mask as the agent, maintaining fairness in feasibility constraints.

Training Protocol. For every training episode the agent executes £k = 5 actions, gathers 10
trajectories, and then performs one PPO update. Training stops after 250 episodes (< 6 h on the
reference GH200). Early stopping is triggered if the average AMaxFlow over the last 10 episodes
fails to improve for 20 consecutive epochs. A diagram of the training loop can be found in Figure 2
in A. with PPO seetings found in 2

Message passing. We use an edge-conditioned MPNN with a permutation-invariant max aggregator;
full equations and ablations are deferred to App. E.1. We use L = 2 message-passing blocks, hidden
size 64, ReLU activations, and layer normalization after each block; actor/critic heads are linear
unless noted. Complete model settings appear in Table 1; the architecture diagram is Figure 1
(App. A).

5.2 Evaluation Protocol and Metrics

For each episode we fix (source, sampled balances, PRNG seed) across methods and measure absolute
gain AF = Fafter _ pbefore primary metric: paired uplift vs. Betweenness (pp). Secondary: absolute
AF [BTC] and win-rate. Uncertainty is reported as 95% Cls computed over episodes. Budget: k=5
actions at 0.20 BTC each.

Primary metric. We report relative maxflow improvement over Random baseline as the main
evaluation criterion. This is measured in percentage points, computed per episode as the relative
gain of policy 7 over Random, then averaged across n=1000 paired episodes with 95% confidence
intervals.

Secondary metrics. (i) Absolute improvement AF' in BTC, averaged across paired episodes; (iii)
win rate, the fraction of paired episodes in which 7 achieves higher max-flow than Betweenness.

Episode budget. Each episode allows k=5 actions (channels) with 0.2 BTC per action (Section 5).
Metrics are recorded immediately before the first and after the final action.

6 Results
6.1 Main Results on the 5k Subgraph

On the 5k subgraph (n=1000 paired episodes), the MP-Flow model achieves the highest absolute
throughput gain with AF' = 0.168 4+ 0.003 BTC and delivers a significant relative improvement over
Betweenness, see Table 3 and Fig. 4 (App. A). Centrality baselines remain strong: Random choice
attains AF = 0.089 4 0.003 BTC and anchors the comparison. All other methods underperform

Deep Graph RL: MP-Flow

Table 2: PPO hyperparameters.

Parameter Value
Clip ratio (¢) 0.2
Value loss coefficient (¢;) 0.5
Learning rate (o) 0.002
PPO epochs 5
Max grad norm 1.0

Table 3: Main results on 5k subgraph (n=1000 paired episodes). Values are mean £95% CI,
measured relative to the Random baseline. AF’ is absolute max-flow uplift in BTC.

Policy Relative Improvement [%] AF [BTC]

Random (BL) - 0.089 + 0.003
Degree 96.392 &£ 40.877 0.154 £ 0.003
Betweenness 110.245 £ 36.810 0.163 £+ 0.003
GCN] 104.446 £ 18.817 ~ 0.150 & 0.003
MP-Flow 119.983+ 36.023 0.168 +£0.003

Notes. Relative improvement is computed w.r.t. Random baseline. Dashed lines separate centrality-based and
learned policies.

relative to Betweenness on uplift with CIs excluding zero. Figure 4 App. A corroborates the absolute
ordering in AF, while Fig. 3 highlights the relative improvement margins.

Table 4: Pairwise win rates (%) between policies on 5k subgraph. Cell (4,) is the fraction of
episodes where row ¢ outperforms column j.

Random Degree Betw. GCN

Degree 96.0 - 48.2 51.1
Betweenness 97.2 51.8 - 584
GCN 93.4 48.9 41.6 -

MP-Flow 98.0 60.3 63.2 68.7

6.2 Ablation Study: Graph Scale and Hub Removal

We stress-test along two axes: subgraph size N € {1k, 2k, 3k, 4k, 5k} and targeted hub removal
(removing {0, 5, 10, 25, 50} highest-capacity nodes), each with n=100 paired episodes. MP-FLOW
matches or exceeds Betweenness across sizes—with small gains at 1k—2k, a negligible dip at 3k,
and a renewed margin at 4k—5k—and its advantage widens as top hubs are pruned, consistent with
bottleneck relief rather than hub chasing (Table 5). Full means and 95% ClIs for all methods are in
App. B; corresponding plots are in Figs. 5 and 6. Baseline is shown here as the best baseline heuristic
from the results of our main study.

6.3 Cross Validation

To evaluate temporal robustness, we train each policy on one Lightning Network snapshot and test
on a subsequent (forward) or prior (backward) snapshot, yielding three cross-time pairs: D1—D2,
D2—D3, and D3—D1. We added a Graph Attention Network (GAT) baseline after completing
the primary experiments because its design is closely related to the GCN/MPNN variants already
reported. To keep the main comparison consistent with the originally run baseline set and within the
available compute budget (multi-seed x multi-snapshot), we report GAT only in the cross-snapshot
generalization study (§6.3) and provide full details in the Appendix. Pilot runs on the seen-graph
setting showed similar ordering to the main table and do not alter our conclusions.

MP-Flow achieves the strongest relative improvements on both forward directions (D1—D2:
+90.6% + 5.3, D2—D3: +99.5% =+ 6.1), demonstrating consistent generalization as the network
evolves over time. On the backward pair (D3—D1), GCN slightly leads (+80.0% =+ 4.3) with MP-

Deep Graph RL: MP-Flow

Table 5: Ablation summary: MP-FLOW vs Betweenness (best baseline heuristic) (A over Between-
ness; positive favors MP-FLOW).

Graph size N

1k 2k 3k 4k Sk
AF [BTC] 0.024 0.018 —0.002 0.007 0.007
Relative Improvement [pp] 6.77 6.63 —0.64 3.46 4.38

Targeted hub removals (count)

0 5 10 25 50
AF [BTC] 0.004 0.005 0.004 0.011 0.007
Relative Improvement [pp] 2.16 3.19 3.07 8.89 7.69

Table 6: Cross-snapshot generalization (n=3 seeds; n=250 paired episodes per cell). Values are
mean £95% CI of relative max-flow improvement (%) over the Random baseline (ratio-of-means;
bootstrap CI). Train— Test pairs probe temporal drift (forward/backward).

Policy DI — D2 (May — Jul) D2 — D3 (Jul = Oct) D3 — DI (Oct — May)

Rel. Improvement [%] Rel. Improvement [%] Rel. Improvement [%]

Random (BL) - - _
Degree 73.914 £ 5.218 85.786 + 5.722 66.226 &+ 4.176
Betweenness 85.121 &+ 4.997 88.411 + 5.734 77.233 £ 4474
GCN 76.801 £ 5.257 92.942 + 5.525 80.030+ 4.264
GAT 87.849 + 5.255 89.204 £ 5.918 60.321 + 4.357
MP-Flow 90.558 + 5.280 99.512+ 6.149 72.002 £ 4.173

Flow close behind (+72.0% =4 4.2). Among heuristic baselines, Betweenness remains the strongest
yet continues to trail the learned policies in every direction. Confidence intervals for heuristics
are tight—reflecting stable but lower gains—while learned policies show modestly wider intervals
consistent with higher mean uplifts. Overall, these results indicate that the learned models, and
MP-Flow in particular, transfer reliably across temporally separated Lightning Network snapshots,
with robust forward generalization under topological drift.

6.4 Discussion

Why does MP-FLOW beat GCN and heuristics? We posit three complementary reasons tied to
the objective, the aggregator, and the critic.

(i) Objective alignment via RL. Heuristics (Degree/Betweenness) optimize static surrogates that
ignore directed balances, per-episode budget constraints, and global flow interactions. By contrast,
PPO directly optimizes an estimate of max-flow improvement, using per-step rewards that reflect
marginal changes in the network’s s—t capacity surface. The paired protocol further removes variance
induced by the stochastic balance sampler, making the learning signal well aligned with the target
metric.

(ii) Max aggregation as a bottleneck detector. GCNs with mean aggregation dilute sharp local
evidence: high-capacity, low-fee neighbors are averaged with weak or irrelevant ones, leading to
oversmoothing and loss of contrast in precisely the settings where payments are constrained by
bottlenecks. The MPNN’s element-wise max aggregation preserves extreme features in each receptive
field, acting as a differentiable “bottleneck lens.” This inductive bias is well matched to max-flow,
which is itself governed by min-cut structures—i.e., deciding the episode’s return often hinges on a
few limiting edges/nodes rather than the average neighborhood. Empirically, this manifests in higher
win rates and larger paired uplifts.

(iii) Value estimation with global max pooling. The critic’s global max pooling focuses the value
estimate on the most constraining substructure (e.g., the tightest cut touching the source), improving

Deep Graph RL: MP-Flow

credit assignment for actions that relieve the dominant bottleneck. In contrast, GCN baselines
aggregate globally by means or sums, which can overweight widespread but non-binding connectivity.

A neuro-algorithmic reasoning view. The combination of (a) max-type message passing, (b) a
value head that emphasizes the dominant constraint, and (c) an RL loss that rewards marginal flow
improvements, encourages the network to learn algorithmic templates reminiscent of push-relabel /
min-cut reasoning. Messages propagate “capacity potential” and “cut tightness” signals; the actor
then selects nodes that either (1) create new disjoint paths, or (2) thicken the current min-cut around
the source. In other words, MP-FLOW appears to internalize a coarse, differentiable version of
classical flow heuristics—an instance of neuro-algorithmic reasoning where learned computation
mirrors the structure of the target algorithm while remaining en to end trainable.

Robustness: hubs and scale. Heuristics overweight hubs, so their performance falls when the
hub set is pruned. MP-FLOW instead prioritizes capacity-aware connectivity, often allocating to
medium-degree nodes that unlock near-disjoint routes or thin the active min-cut around the source;
max aggregation preserves these few decisive signals rather than averaging them away. With a fixed
k=5 budget, larger N also dilutes global centrality (scores flatten and helpful hubs are rarer for a
given source), yet MP-FLOW remains competitive because features are re-normalized per graph,
max-based message passing amplifies high-capacity/low-friction corridors near the source, the critic’s
global max pooling focuses value on the tightest cut, and action masking restricts to feasible peers.
Empirically, margins persist under hub removals and re-emerge at N=4k-5k (Figs. 6, 5).

7 Conclusion

We posed liquidity placement on the Lightning Network as a graph decision process and trained a
compact PPO agent with an MPNN-Max backbone to maximize absolute max-flow uplift under a
fixed per-action budget. On a 5k-node subgraph and 1000 paired episodes, MP-FLOW achieved the
largest absolute gain and a statistically significant paired uplift over the strongest heuristic baseline,
Betweenness. The policy’s advantage persists across graph scales (1k—5k) and under targeted hub
removals, suggesting that it leverages capacity-aware bottleneck structure rather than raw centrality.

For operators, this matters because Betweenness is the prevailing industry heuristic for peer selection;
exceeding it indicates immediate, practical benefit without requiring payment traces or heavy models.
The agent remains lightweight (two message-passing layers, masked policy head) and deployable.

Limitations include the uniform balance sampler, a fixed k=5 per-action budget, and max-flow as
a proxy for realized success rate and economic yield. Nonetheless, results indicate that a simple
MPNN with max aggregation, trained end-to-end with PPO, can reliably outperform topology-only
heuristics on real LN topology. Future work will incorporate richer reward terms (fees and costs),
hybrid discrete/continuous actions, and balance priors, and will evaluate across time on full-network
snapshots.

8 Future Work

We view MP-FLOW as an extensible foundation. As well as an intensive hyperparameter grid search,
there are many avenues for further development

Richer, simulation-backed rewards. A traffic simulator or replayed-demand model would allow
augmenting the reward beyond max-flow uplift to include fee revenue and carrying costs. A scalarized
objective could be

Tt = Aow (Ft - Ft—l)

+ Mtees (RIS — RI*5)
— Acost (Cfn—chain + Ciease).

with weights chosen by the operator. This would enable yield-aware allocation policies.

Expanded action space. Beyond discrete peer selection, we plan to (i) add a continuous resource
allocator that distributes a per-step budget B across chosen peers, e.g. « = B - softmax(z) to ensure

Deep Graph RL: MP-Flow

positivity and budget feasibility, and (ii) introduce operational actions such as channel closing and
rebalancing with friction costs. This yields a hybrid discrete/continuous policy that more closely
reflects operator tooling.

10

Deep Graph RL: MP-Flow

References

[1] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993. 1, 2

[2] Vincent Davis, Vikash Singh, and Emanuele Rossi. Channel balance interpolation in the
lightning network via machine learning. IEEE ICBC 2025 Workshop: NextGenDLT (Program
Listing), 2025. Talk/program reference. 3

[3] Michael Folkson. Plugging into C-Lightning: The Future of Lightning Plugins Is Bright, March
2020. 3

[4] Lester R Ford and Delbert R Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399-404, 1956. 1

[5] Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry, 40(1):35-
41,1977. 1

[6] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In NeurIPS, 2017. 1,2

[7] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proc. ICML, 2017. 2, 21

[8] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow problem. J.
ACM, 35(4):921-940, October 1988. 19

[9] L. R. Ford Jr and D. R. Fulkerson. Maximal Flow Through a Network. Canadian Journal of
Mathematics, 8:399-404, January 1956. 19

[10] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2017. 2

[11] Lightning Labs. Autoopen. https://docs.lightning.engineering/
lightning-network-tools/lightning-terminal/autoopen, 2024. Accessed
2025-08-28. 3

[12] Lightning Labs. Getnodemetrics (betweenness centrality) — Ind api. https://lightning.
engineering/api-docs/api/lnd/lightning/get-node-metrics/index.html, 2024.
Accessed 2025-08-28. 3

[13] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning,
July 2019. arXiv:1509.02971. 4

[14] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep
Reinforcement Learning, June 2016. arXiv:1602.01783. 4

[15] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2
[16] M E J Newman. Networks: An Introduction. Oxford University Press, 2010. 1

[17] Rene Pickhardt. An upper bound for the probability to be able to successfully conduct a payment
on the lightning network. GitHub Notebook, 2021. Accessed Aug. 28, 2025. 3

[18] Rene Pickhardt and Stefan Richter. Optimally reliable & cheap payment flows on the lightning
network. arXiv preprint arXiv:2107.05322,2021. 3

[19] Rene Pickhardt, Sergei Tikhomirov, Alex Biryukov, and Mariusz Nowostawski. Security
and privacy of lightning network payments with uncertain channel balances. arXiv preprint
arXiv:2103.08576, 2021. 3

[20] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network:. 2

[21] Elias Rohrer, Jason Malliaris, and Florian Tschorsch. Discharged payment channels: Quantify-
ing the lightning network’s resilience to attacks. In IFIP Networking, 2019. 1

[22] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms, August 2017. arXiv:1707.06347. 1, 2, 3, 4

[23] Istvan Seres, Andras Gulyds, J6zsef Stéger, and Andrds Benczir. Topological analysis of the
lightning network. In Financial Cryptography and Data Security Workshops, 2020. 1, 2

11

https://docs.lightning.engineering/lightning-network-tools/lightning-terminal/autoopen
https://docs.lightning.engineering/lightning-network-tools/lightning-terminal/autoopen
https://lightning.engineering/api-docs/api/lnd/lightning/get-node-metrics/index.html
https://lightning.engineering/api-docs/api/lnd/lightning/get-node-metrics/index.html

Deep Graph RL: MP-Flow

[24] Vibhaalakshmi Sivaraman, Shaileshh Venkatakrishnan, Mohammad Alizadeh, Giulia Fanti, and
Pramod Viswanath. Routing Cryptocurrency with the Spider Network. September 2018. 3

[25] Vincent, Emanuele Rossi, and Vikash Singh. Channel balance interpolation in the lightning
network via machine learning. arXiv preprint arXiv:2405.12087,2024. 3

[26] Peng Wang, Hong Xu, Xin Jin, and Tao Wang. Flash: Efficient Dynamic Routing for Offchain
Networks, June 2019. arXiv:1902.05260. 3

[27] Yifei Yang, Dongmian Zou, and Xiaofan He. Graph Neural Network-Based Node Deployment
for Throughput Enhancement. IEEE Transactions on Neural Networks and Learning Systems,
35(10):14810-14824, October 2024. Conference Name: IEEE Transactions on Neural Networks
and Learning Systems. 3

12

Deep Graph RL: MP-Flow

A Additional Figures

13

Deep Graph RL: MP-Flow

State:

X : node features (N x F) [z-score]

—E : edge features (M x Fe) [log(1+x), z-score]
Ledge_index : (2 x M) [self-loops added]

v
MPNN Encoder (L=2,H=64)

Edge MLP 1: Linear (Fe, H x F)

\

r NNConv]»[RelLU

\

Edge MLP 2: Linear (Fe, H x H)

>[RelLU

\

r NNConv]
Y

LayerNorm
))
g v) (v
Value Head Policy Head
Global Max Linear Layer
Pool (H) -> (M)
Linear Layer Clamp
(H) -> (1) [-10, 10]
Tanh Softmax
tau = 1.0

n(als): over M

V(s) € [-11] nodes

Figure 1: MPNN-Max actor—critic used in HERMES-1. Inputs are node features X € RV*¥,
edge features E € RM*Fe (log(1+x) then z-score), and the directed edge list (self-loops added).
The encoder has two edge-conditioned convolutions (NNConv) whose weights W (e;;) are produced
by small edge MLPs; messages are aggregated by element-wise max, followed by ReLU and a
LayerNorm. The actor maps node embeddings through Linear(H — 1), clamps logits to [—10, 10],
and applies a softmax over nodes to produce 7(a | s). The critic applies global max pooling over
nodes, then Linear(H — 1) and tanh to output the state value V' (s) € [—1, 1]. H denotes the hidden
width. 14

Deep Graph RL: MP-Flow

Start

Collect Trajectories

| Reset State Environment

Action

Masked

Rollout Buffer

S_t, a_t, logr_oldt, Trajectory State R N N
r_t, mask_t, done_t, Terminated? ° Policy Head
S_{t+1}
]
v Update Networks (PPQ)

Compute

Value Head Advantages and Total PPO Loss
Targets

Optimizer
Step

Figure 2: PPO training flow. We collect K on-policy trajectories by sampling actions from a
masked policy head and append transitions (s, a;, log Tow ¢, 7, mask, done;, s;11) to the rollout
buffer. After collection, the value head (no grad) provides V;, V;1 1 to compute TD residuals §; =
r¢ + v(1 — done;) Vi1 — V4, advantages A; = GAE(d:;7, A), and targets Ry = A; + Vi Ay is
standardized. PPO then runs for multiple epochs and mini-batches, optimizing the clipped policy
loss, value MSE, and entropy bonus with gradient clipping and Adam, updating the shared MPNN
encoder and the policy/value heads.

15

Deep Graph RL: MP-Flow

Paired uplift relative to Betweenness (£95% Cl)

Hermes-1 A
Degree -
GCN A
Random -

-60 -50 -40 -30 -20 -10 0 10
Paired % uplift

Figure 3: Main results on 5k subgraph (n=1000 paired episodes). Values are mean £ 95% CI over
per-episode paired differences; policy weights fixed (single training seed). AF'is in BTC.

Hermes-1 16,924,976.9

Betweenness 16,270,728.6
15,386,852.2

Degree

GCN 15,009,698.0

Random - = 8,854,437.2
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
A Max-Flow (sat) le7

Figure 4: Absolute gain AF in satoshis.

B Full Ablations

16

Deep Graph RL: MP-Flow

le7
—8— Betweenness
Degree
351 —o— GCN
—8— Hermes-1
—8— Random
3.0
]
K
2 2.5+
©°
[N
x
s
< 2.0+
1.5 1
1.0
1000 1500 2000 2500 3000 3500 4000 4500 5000

Graph size (nodes)

Figure 5: Robustness under graph size. Mean increase in max-flow (sat) after allocations vs.
number of nodes included (ranked by degree).

Table 7: Graph size ablation: mean increase in max-flow [satoshi].

Policy 1k 2k 3k 4k Sk
Betweenness 35,119,967 26,847,743 24,467,038 19,856,956 16,715,054
Degree 35,442,061 26,320,441 21,418,223 18,152,661 15,925,096
GCN 35,557,096 24,916,419 20,360,919 17,848,011 15,354,765
Hermes-1 37,498,380 28,628,957 24,310,135 20,543,831 17,447,526
Random 35,042,641 21,898,126 16,210,424 12,824,566 9,516,612

Table 8: Graph size ablation: 95% Cls on mean [satoshi].

Policy 1k 2k 3k 4k Sk
Betweenness 4,700,479 2,853,931 1,454,478 1,034,191 823,694
Degree 3,570,816 2,411,171 1,861,081 1,233,102 799,558
GCN 3,637,812 2,306,042 1,610,266 1,289,970 952,225
Hermes-1 3,584,004 2,638,046 1,709,296 1,207,376 845,026
Random 3,378,914 2,194,258 1,524,510 1,129,366 845,773

17

Deep Graph RL: MP-Flow

le7
—8— Betweenness
Degree
1.6 1 —o— GCN
—8— Hermes-1
—8— Random
1.4 1
]
2 1.2 1
2
©°
[N
5
o 1.0
S|
0.8
0.6 1

0 10 20 30 40 50
Hubs removed

Figure 6: Robustness under targeted hub removal (5k subgraph). Mean increase in max-flow
(sat) after allocations vs. number of highest-degree hubs removed.

Table 9: Targeted hub removal: mean increase in max-flow [satoshi].

Policy 0 5 10 25 50
Betweenness 16,863,171 15,016,857 13,413,550 11,860,529 9,682,913
Degree 15,889,267 14,253,300 12,421,288 11,413,222 9,064,480
GCN 15,668,308 13,354,329 11,841,622 10,785,778 9,244,112
Hermes-1 17,227,615 15,496,340 13,825,515 12,914,576 10,427,826
Random 9,465,738 7,437,863 7,203,007 5,821,940 4,728,582

Table 10: Targeted hub removal: 95% CIs on mean [satoshi].

Policy 0 5 10 25 50
Betweenness 825,513 578,908 637,288 486,358 508,064
Degree 783,643 666,313 788,502 455,548 503,849
GCN 849,652 648,058 709,782 519,346 514,983
Hermes-1 812,871 611,489 812,458 389,750 472,074
Random 830,090 656,729 651,901 536,008 483,645

18

Deep Graph RL: MP-Flow

C Definitions and Implementation Details (for reference)

Feature definitions. Node features: PageRank, capacity ratio, normalized degree, local clustering;
z-scored per reset. Optional edge features: base fee (msat), fee rate (ppm), channel capacity (sat)
with log(1+z) then z-score.

Training details. Two message-passing layers (hidden width 64), max aggregation. PPO with
masked discrete actions; critic uses global max pooling. Additional setup (optimizer, epochs, early
stopping) as in the main text; full diagrams are in Figs. 1-2.

D Max-flow: full formulation

The Maximum Flow (Max-Flow) problem is a fundamental concept in network flow theory, first
introduced by Lester R. Ford Jr. and Delbert R. Fulkerson in 1956. Their seminal work laid
the foundation for analyzing flow networks by formulating the Max-Flow Min-Cut theorem and
proposing the Ford-Fulkerson algorithm for computing the maximum flow in a network [9]. It
involves determining the maximum amount of flow that can be sent from a source node s to a sink
node ¢ in a flow network, represented as a directed graph G = (V, E') where V is the set of vertices
(nodes) and F is the set of edges (links). Each edge (u,v) € E has a non-negative capacity c(u, v)
representing the maximum flow that can pass through that edge. The problem is subject to the
following constraints:

* Capacity Constraints: For every edge (u, v), the flow f(u,v) must satisfy:
0 < f(u,v) < c(u,v)

¢ Flow Conservation: For every node u except the source s and sink ¢, the sum of flows into u

equals the sum of flows out of u:
> fw) =3 f)
veV veV

The objective is to maximize the total flow from the source to the sink:

Maximize Z f(s,v) — Z f(v,s)

veV veV

Over the years, several algorithms have been developed to solve the max-flow problem more efficiently.
One such algorithm is the Push-Relabel algorithm, also known as the Preflow-Push algorithm,
introduced by Andrew V. Goldberg and Robert E. Tarjan in 1986 [8]. The Push-Relabel algorithm
improves upon previous methods by utilizing a different approach that locally adjusts flows and
maintains a preflow—a flow that allows excess at intermediate nodes—to find the maximum flow
more efficiently, especially in dense networks.

E Experimental Setup

Experiments ran on an Intel 12"-Gen Core i7 with 64 GB RAM, an RTX 3090 (24 GB) and a
GH200; code is in Python 3.11 using PyTorch 2.2, PyTorch-Geometric 2.5, NetworkX 3.3, and
iGraph 0.10, with custom RL utilities following the gymnasium API. We use a public LN snapshot
from 16 July 2025 (7,691 nodes; 37,018 bidirectional channels), converted into a directed, weighted
graph as in Sec. 4.1; only total channel capacities are observed, so per-direction balances are
sampled once per run, and node/edge features are z-scored per reset. The LightningNetworkEnv
extends a base graph environment: each episode permits k=5 masked liquidity actions (open/top-up);
transitions deterministically update capacities; and the per-step reward is the marginal change in
absolute max-flow, r, = F} — F}_1, computed via push—relabel. The total maxflow reward is the
sum of total flow computed a list of 50% of the nodes in the network, sampled randomly as targets
from our fixed source.

S ~ Uniform({U CV : |U| = Hz/il})

19

Deep Graph RL: MP-Flow

Episodes end after the fifth action or an invalid selection; repeated max-flow solves make training
largely CPU-bound. For each undirected channel (u, v) with total capacity C,,, we draw a random
proportion a,, ~ Uniform(0,1). We then assign o, Cy, to the directed edge v — v and the
remainder (1 —) Cyy to the reverse edge v — u. This procedure ensures that the two directed
balances c,,, and c,, are random but always sum exactly to the channel capacity C,,,, providing an
unbiased split of liquidity between the two directions. Each episode, this sampling is repeated.

Oy ~ Uniform(0, 1),
Cyv = Olyy Cm)a Cyv t Cyou = Cuv~
Cyou = (1 - auv) Cuva

Uncertainty and significance. Unless stated otherwise, confidence intervals are 4= 95% CI on means:
Z £ 1.96 s/+/n where x is either AF or d and s its sample standard deviation.

Implementation Notes. The MPNN backbone is implemented with
torch_geometric.nn.MessagePassing. [Edge attributes are concatenated channel capac-
ity and balance ratio; self-loops are added automatically. Code and trained checkpoints are available
in the accompanying repository.

For each reset of the environment we build two matrices: a node—feature matrix X € RV >4 and
(optionally) an edge—feature matrix £ € RM*3_ All features are re-computed after any topological
change and standardised (z-score per dimension) before being fed to the MPNN.

Environment. We implement a lightweight BaseNetworkEnv (graph ops via NetworkX)
and two specializations: RandomNetworkEnv (Barabdsi—Albert graphs) for smoke tests and
LightningNetworkEnv for real LN snapshots (loading, masked open/top-up actions, deterministic
capacity updates). The API mirrors gymnasium with custom reset/step; rewards use push-relabel
as defined earlier, enabling drop-in swapping of graph sources while keeping identical RL code.

E.0.1 Node Features

1. PageRank Centrality Cpr(u). Captures global influence and replaces the earlier adjacency

indicator:
Xu,l = CPR(U).
2. Capacity Ratio Ccpr(u). Fraction of total network liquidity held by u:
C
Cor(u) = =——, Xu2 = Cor(u).
ZUEV C”
3. Normalised Degree Cp(u). Relative connectivity of u:
deg(u
Cp(u) = Ng_(1) X3 = Cp(u).
4. Local Clustering Coefficient C¢ (u). Density of the node’s neighbourhood:
Xu’4 = CC (U)

When use_edge_features is enabled the MPNN receives three attributes per directed edge (u, v):

1. Base Fee f°°. Fixed cost charged on any payment through (u,v):

uv

Xuo1 = f25¢ [msat)].
2. Fee Rate [Proportional fee charged per unit of forwarded liquidity:
XuU,Q = {ZEe [ppm]

3. Channel Capacity c,,. Total liquidity available on channel (u, v):
Xuv,3 = Cyv [s81].
To mitigate heavy-tailed distributions we first apply a log(1 + z) transform:
Euvyi =log(1+eypi) (i=1,2,3),
followed by per-column normalisation E < (E — pug) @ (og +¢).

Edges with missing fee information default to zeros, ensuring that the feature tensor always has shape
M x 3.

20

Deep Graph RL: MP-Flow

E.1 MPNN-Max Architecture
The actor and critic share the same message-passing backbone but have separate output heads.

1. Input. Node feature matrix X € R™V*¥ and edge feature matrix £ € RM*Fe,

2. Message Passing Block (repeated L = 2 times). For each edge e = (u, v) the message function
is
mig) = (WD ||) || eus]),

followed by node update
l
P = o WD 0D | AGGIm) huenw)])

where AGG is element-wise maximum. Max aggregation proved empirically more discriminative
for heterogeneous channel capacities than mean. This design follows the Message Passing
Neural Network (MPNN) framework [7], with edge-conditioned convolutions in the spirit of
ECC/NNConv [?].

3. Policy Head (Actor). A linear projection maps h(%) to logits 0 € R™V. The masked soft-max
produces the stochastic policy:
exp(0;))
mo(a; | s) =) i€ Als),
2.

FEA(s) exp(0;)

where A(s) is the valid action set given by the environment mask.

4. Value Head (Critic). Global max pooling aggregates node embeddings: hg = max,cy hq(LL).

A single fully-connected layer with tanh activation outputs the state-value estimate Vj(s) €
[-1,1].

21

	1 Introduction
	2 Background
	2.1 Bitcoin & Lightning Network
	2.2 Graph Neural Networks (GNNs)
	2.3 Max-Flow
	2.4 Reinforcement Learning (MDP/PPO)

	3 Related Work
	4 Method
	4.1 Lightning Network as a Graph
	4.2 Feature Engineering
	4.3 Markov Decision Process
	4.4 Algorithm Selection
	4.5 Application-specific modifications.

	5 Experimental Details
	5.1 Data Processing
	5.2 Evaluation Protocol and Metrics

	6 Results
	6.1 Main Results on the 5k Subgraph
	6.2 Ablation Study: Graph Scale and Hub Removal
	6.3 Cross Validation
	6.4 Discussion

	7 Conclusion
	8 Future Work
	A Additional Figures
	B Full Ablations
	C Definitions and Implementation Details (for reference)
	D Max-flow: full formulation
	E Experimental Setup
	E.0.1 Node Features
	E.1 MPNN-Max Architecture

